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Abstract. Exact solutions to the harmonic oscillator with an exponentially decaying mass are
explicitly represented in terms of Bessel functions. The dynamical invariant quantity of the
system has the form of a rosette-shaped orbit in phase space. From this, it is confirmed that this
system is bounded. By using the invariant operator represented in terms of lowering and raising
operators, we have obtained wavefunctions and the propagator. Finally, minimum uncertainty
states and conditions are evaluated by using other operators which are obtained from the above
ones.

1. Introduction

Although there has been much concern about time-dependent quantum systems in recent
years, only a few time-dependent Sétlinger equations can be solved exactly. One of
these solvable problems is the quantum system with a quadratic Hamiltonian, such as
the Caldirola—Kanai Hamiltonian [1,2]. Dekker [3] investigated the relations between
various treatments of the classical linearly damped harmonic oscillator and its quantization.
Hagedornet al [4] studied the quantum mechanical evolution generated by the quadratic
Hamiltonian with time-dependent coefficients. In particular, considerable effort has been
devoted to finding solutions for systems with a time-dependent mass. Papadopoulos [5]
obtained the path integral representation of the propagator of a particle with a time-dependent
mass. Using a time-dependent canonical transformation, Colegrave and Abdalla [6] used the
harmonic oscillator with constant frequency and with variable mass to calculate the electric
and magnetic field intensities in a FabrngtBt cavity. They also solved the harmonic
oscillator with exponentially decaying mass [7] and with strongly pulsating mass [8].

In previous papers, we obtained wavefunctions, energy expectation values, uncertainty
relations, transition amplitudes and coherent states for time-dependent quantum systems
[9-12]. Moreover, we developed the exact quantum theory of a time-dependent bound
guadratic Hamiltonian system [13].

In this paper, we consider the harmonic oscillator with an exponentially decaying mass
and a constant spring-constant. The previous results [7] were obtained by using a time-
dependent canonical transformation. However, we evaluate the solutions for this system
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by means of changing a time scale. Due to this change, the solution of the classical
equation of motion can be explicitly represented in terms of Bessel functions, and we
deal with the system by using the invariant operator method. Lewis [14, 15] developed
the theory of invariants for treating those quantum systems, which has shed light on their
solutions. In addition to their intrinsic mathematical interest, the invariants have received
attention because of their use in discussing physical problems [16—18], and their possibility
in applications of classical and quantum physics [19].

We shall begin by deriving an invariant operator for the harmonic oscillator with an
exponentially decaying mass. In section 2, we obtain an invariant operator and define
lowering and raising operators. By using these operators, the eigenstates of the invariant
operator and the exact wavefunctions satisfying &dimger equation are calculated in
section 3. In section 4, the propagator for the system is given by the expansion of the
wavefunctions. In section 5, we evaluate the uncertainty relations, the minimum uncertainty
states and the minimum uncertainty conditions. Finally, in section 6 we give results and a
discussion for the system with an exponentially decaying mass.

2. Invariant quantity

We consider the harmonic oscillator with exponentially decaying mé&s = Moe ' in
which the parametefwe) is a positive real constant. Since the physical momentpp is
Moyge ¢, the classical equation of motididp, /dr = —kq) becomes

G(1) —aq(t) + wg€'q(t) =0 (2.1)
wherew? = k/My. Equation (2.1) is given by the classical Hamiltonian

2
p - 2 2
H = - — M, 2.2
(p5 C]J) 2M0e0( + 2 Owoq ( )

where p and g are the canonical momentum and coordinate, respectively. To solve the
classical equation of motion, we transform the time scale into e*’. Then the equation
of motion (equation (2.1)) becomes

dqus(;) + aw—z‘z’sq(s) =0. 2.3)
The general solution to equation (2.3) is given by
q(s) = s1? [lel (2;"‘)s1/2> + CoYy (2;”0&/2)} (2.4)
whereC; and C, are constants. Therefore, the solution to equation (2.1) can be written as
q(t) = €"*[C3J1(z) + C4Y1(2)] (2.5)

wherez = %e‘”/z and J; and Y; are the first- and second-kind Bessel functions of the
order of 1, respectively, anfl; andC,4 are integration constants. We can also represent the
solution (equation (2.5)) as

q(t) = r()[Cse”" + Cee™"] (2.6)
where

r(t) = €P[JE(z) + Y2()]Y? (2.7)

0(t) = arctanl1(z)/J1(2)]. (2.8)
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From equations (2.1) and (2.5) we can easily show that equations (2.7) and (2.8) are solutions
of the following differential equations:

F(1) — ar (1) + [wge" — 62(0)]r(1) = 0 (2.9)

6(r) = 0. (2.10)
Multiplying equation (2.10) byMor(:)e %, we can obtain the relations

0 = Mor?(1)6(t)e™" + 2Mor ()i ()0 (1) — aMor?(1)6 (t)e™*"

d .
= o [Mor® @0 @e™]

_dQ

=4
In addition, we can readily confirm that the invariat, is not zero from the Wronskian
of two independent solutions (equation (2.5)),

Q = Mor’(H)0(1)e™™

= Mowo€"/?[J1(2)Yo(2) — Jo(2) Y1(2)]. (2.11)
Let us obtain another dynamical invariant quantity satisfying the equation
dr  ar 1
dr ot + ih[ ] ( )

Although there may be many different invariants with many different auxiliary conditions,
we take the form of the invariant quantity as

I = 3[A@0)p? +2B(1) pg + C(1)q’] (2.13)

where A(t), B(¢t) andC(¢) are real time-dependent functions. From equations (2.2), (2.12)
and (2.13) we can obtain the relations of the time-dependent coefficiefita®f

At) = _f\fl?((tt)) (2.14)
B(1) = M(No* (A1) — % (2.15)
C(1) = 2M (1)w?(t) B(t). (2.16)
The above equations (equations (2.14)—(2.16)) give the time-dependent coefficients as
A1) = ' [JE(2) + YE(2)] (2.17)
B(t) = —Mowo€"*[Jo(2) J1(2) + Yo(2)Y1(2)] (2.18)
C(t) = {M§wd[Jo(z)J1(2) + Yo(2) Y1(2)]* + €' Q%) (2.19)

J2(@) + Y2(2)
From equations (2.13) and (2.17)—(2.19) the dynamical invariant quantity,given by

1(t) (e Q%q% + ([ JE(2) + YE()]p

T 2[2(2) + YA(2)]
—Mowo[ Jo(2) J1(z) + Yo(z)Y1(2)]g}?}. (2.20)

The invariant/ can be diagonalized by the transformation matrix

_ [ cosp(r) sing(r)
T_<—Sind>(t) Cos¢(r)> (2.21)
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Figure 1. Time variations of the angk¢(r) between the-axis and major axis of a rosette-shaped
orbit in phase space.
where
&2 )2 Yi(z
d@t) = arctan{ - [11G) + Y1 @] (1)
2Mowol Jo(z) J1(z) + Yo(z)Y1(2)]
é)zf J2 Y2 2 1/2
_[1+ , 2( 1 (@) + Y1) ) 52@)] } (2.22)
aM2E \ Jo(2)J1(2) + Yo(2) Y1(2)
e—at
8() =1 (e Q% — M{whlJo(x) 1(2) + Yo(2) Ya(2)]}. (2.23)

J2) + YD)

The time-dependent quantity,(¢), is the angle between thg-axis and major axis of a

rosette-shaped orbit in phase space. The time variatiogggfare illustrated in figure 1.

The full and dotted curves correspond to the casesycE 1.1 andwy = 1.2, respectively.

The angle varies with time from 0 ter/2. The form of the dynamical invariant orbit

confirms that the harmonic oscillator with an exponentially decaying mass is a bound system.
From equation (2.20) we can define the time-dependent lowering and raising operators,

a(t) andaf(r), as

a(r) = (Uf(z) + Yf(z)])”z{ 1
B 2hQ J2(2) + Yi(2)

[e7/2Q — iMowo(Jo(2) J1(z)

Yo Ya()q] + ie‘”/zp} (2.24)

ate) ([112(1) + Y2(2)]

12
1 —at/2 P
s ) { [e=/2 + i Mowo(Jo(2) J1.(2)

JE2) + YE @)

o) Ya()g] — ie“f/zp}. (2.25)
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Then the dynamical invariant operator of the system can be represented in Fock space as
1(t) =hQa)a@) + 1]. (2.26)

3. Wavefunctions
To derive the exact wavefunctions for this system, we calculate first the eigenstate of the
invariant operator. Since the lowering operator satisfies relation
a(t)Uo(q,1) =0 (3.1)
the ground state is given by

Mowoe /[ J1(2)Yo(z) — Jo(z)Yl(z)]>” ¢
hr[J2(z) + YE(2)]

UO(q7 t) = (

xex {_ Mool ™" | 1 ()¥o(2) — I Ya(2))
Pl ™ 2002() + 2o TR T Rk
—i(Jo(z)1(2) + YO(Z)Yl(Z))]qz}- (3.2)

Using equation (3.2), theth excited states become

U a.1) = 1 [a' (O] Uo(q, 1) = 1 M()0(t)
n(qv )—ﬁa() 0(47 )_\/W ETL’

M@) T D], [M@®)0(t)
><exp{—2]7 [G(I) - Ir(t):|q }Hn |: Eq:| : (3.3)

The difference between the eigenstates of an explicitly time-dependent invariant operator
and the corresponding solutions to the Sdlinger equation lies only in the time-dependent
phase factor [15]. Thus, we can take wavefunctions in the form of

W, (q, 1) = Un(g, NE"? (3.4)
where ¥ (r) is a real time-dependent function. In addition, equation (3.4) must satisfy the
Schibdinger equation

—0W,(q,1)

IhT =H(p,q,)¥,(q,1). (3.5

From equations (3.3)—(3.5), the time-dependent phase factor is given by

0@ = — (n + ;) {arctanﬁ’l(z)/ll(z)] - arctan[Yl (2;00> /Jl (2;00)} } (3.6)

Consequently, the exact wavefunction is obtained as

1/4

(g, 1) = (Mowoea’/Z[Jl(z)Yo(z) - sz)h(z)l)““
SV TrY hr[J2(z) + Y2(2)]
M. —at/2
x exp peos (1) Yo(2) — Jo@)Y1(2)]

 2R[JA(z) + YA(2))]

—i[Jo(2)J1(z) + Yo(Z)Yl(Z)]}qz}

1
X exXpy — i <n + 2> [arctar{Yl(z)/Jl(z))
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Figure 2. |Wo(q, 1)|? as a function of coordinatgy) and time(r).

(s (2) /()]

|:<Moa)oe_°”/2[J1(z)Yo(z) — JO(Z)Yl(Z)]>1/2 j|
x H, q|-

(3.7)

RlJZ(2) + Y(2)]

In figures 2 and 3, we illustrate the variations|df(q, ¢)|> and|W1(q, t)|?, respectively.
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4. Propagator

In the case of a bound system, the propagator is expressed in terms of the time-dependent
wavefunctions ¥, (g, t), as [20]

o0
K(g.t:q'.1) =) _ Wu(q. )9} (g, 1) (4.1)
n=0
where Y, (g, t) is a wavefunction at time and coordinatey, andW,(¢’, t’) is that at time
t" and coordinateg’. To find the explicit form of the propagator, we make use of Mehler's
formula [21]

o zn 1 2XYZ — (X24+7Y? 5 o
Z WH,,(X)H,,(Y) = = exp T exp(X? + Y?). (4.2)
n=0""" vV+—

Then the propagator of this system is given by
K(q.1:q'.1") = F(t,/) exp(D(t, Ng* + E(t,1)q” + G(1.1))qq'}  (4.3)
where

MOCUO 1/2
F@,t) = —
@) ( 2ihm )

, 1/4
X (ew/zem [ (2)Yo(z) — Jo(@) Y1) J1(z)) Yo(z) — JO(Z,)YI(Z/)]>

[Y1(2)J1(z") — J1(2)Y1(2)]?

(4.4)
Dt ) = —Move™” {[Jo(zwl(z) + Yo(2)Y1(2)]
’ [ J(z) + Y2(2)]
L LA@Yo@) — @ NE@IARAE) + Yl(z)Yl(z/)]} 45
Y1(2)J1(z') — J1(2)Y1(2")
B, 1) = —Mooe ™" { — [o@) A + Yo@) Y1)
’ i J3(z') + Y2(2))]
+[Jl(z’)Yo(z’) — Jo(@HYY1()H[J1(2) J1(2)) + Y1(Z)Y1(Z/)]} (4.6)
Y1(2)J1(z") — J1(2)Y1(2)
G, 1) = Moo (ea<'+f’>/2[fl<z)yo(z) — SN2 o) — Jo(z'm(z’)])l/z.
' h [Y1(2)J1(z") — J1(2)Y1(2)]?

(4.7)

5. Minimum uncertainty state

In this section, the exact uncertainty relations are evaluated at various states. We can define
the uncertainty ofp andg as

(AGAP) . = {[((mlg?In) — (mIqn)®)* ((mlg®In) — (m|q|n)?)]"?
x[((m|p?|n) — (m|p|n)®)*((m|p?|n) — (m|pln)*)]Y2}M2. (5.1)

By using the wavefunctions, we can easily show that the average valyearatq vanish.
Therefore, the quantum fluctuations are given by

oy = (nlg®In) — (nlqln)?
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Figure 4. The variations of quantum fluctuatieny for the paramete(x) and time(r).

(5.2)

( 1> e ?JR2) + YRQ)]
n+—=\1h

2) mowo[J1(z)Yo(z) — Jo(2)Y1(2)]
and

o 1) o Mowe
op = (n|p®In) — (nlpln)* = (" T h[Jf(Z) + Y?(2)]
*{[/1(2)Yo(2) — Jo(@)Y1(2)] ~ i) () + Yo V1(2)]). (5:3)

In figures 4 and 5, we illustrate the variations of the quantum fluctuatignand o,,,
respectively. Substitution of equations (5.2) and (5.3) into (5.1) gives the uncertainty
relations

(AQ)(APYyn =R(n + DL+ f()]V* (5.4)

where

2
£ = (JO(Z)Jl(Z) + YO(Z)Yl(Z)> ' (5.5)

~ \1(@)Yo(z) — Jo(2)Y1(2)

In figure 6, we illustrate the variations of functiof ). As « goes to zero, the variable
mass is reduced td7y and the functionf(¢) to zero. Therefore, the uncertainty relations
are identical with those of a simple harmonic oscillator.

The minimum value in equation (5.4) is larger thiaf2. Thus, the ground state of this
system is not a minimum uncertainty state. To obtain the minimum uncertainty state, we
introduce the new lowering and raising operators defined by

b(t) = pa(t) + va'(r) (5.6)
bi(t) = wal(t) + v¥a(r) (5.7)
whereu andv are time-independertnumbers and satisfy the relati¢p|?—|v|> = 1. The

canonical transformation (equations (5.6) and (5.7)) which keeps the commutator invariant
is a unitary transformation. In a similar way as in section 3, we can obtain the minimum
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Figure 6. The variations off (¢) in the uncertainty relations as a functionefand time(r).

uncertainty functions

wn(Qvt) =

(Mowoe—“’/Z[h(z)Yo(z) - Jo(z)Yl(Z)])l/ ! (u - v*)”
V2! hlw = vI2[J2(2) + Y{(2)] i — v
Moa)oeiw/z

1— * *
Dl — v L2 + Y2 T )

X exp{ -

x[J1(2)Yo(2) — Jo(2)Y1(2)] — il — v’[Jo(2) J(z) + Yo(Z)Yl(Z)])CIZ}
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(5.8)

Rl —v|2[J2(z) + Y2(2)]

Using equations (5.1) and (5.8), the uncertainty relations fot/the) states can be obtained
as

(Aq)(Ap)n,n - E(l’l + :’zl)

1/4
s Jo(Z)Jl(Z)—l-Yo(Z)Yl(z)) D *T
X:”[ = (o — i) T ] |

[ <Mowoe“’/2[11(Z)Y0(Z) - Jo(Z)Yl(Z)])l/ ? }
x H, q]-

(5.9)
To find the minimum uncertainty condition we sugggsandv have the form
k

= 5.10
= e (5.10)

1 _
V=gt (5.11)

k2 —1

wherek is a real and positive constant. From equation (5.9) we can also find the condition
of u andv for the minimum uncertainty,

2
- ( H@Yol) — Jo(z)Yl(Z)> e |:<J1(Z)Yo(z) - Jo(Z)Yl(Z)> s 1}

1/2

Jo(2)J1(2) + Yo(2) Y1(2) Jo(2)J1(z) + Yo(2)Y1(2)
(5.12)
Jo(2) J1(z) + Yo(2) Y1(2)

= i 5.13
B() Jl(Z)Yo(Z)—Jo(Z)Yl(Z)COSA(t)+SInA(t) (5.13)

At) = arctan{{ (JO(Z)Jl(Z) + YO(Z)Y1(2)>
J1(2)Yo(z) — Jo(2)Y1(2)

Jo(2)11(2) + Yo i@\ 1 T/z} 20 _1}
= (’)[<Jl(z)Yo<z)—Jo<z>Y1<z>> A I

(5.14)
and
(JO(Z)Jl(Z) + Yo(Z)Yl(Z))2 < B < <Jo(z)J1<z> + Yo(z)Yl(z)>2 (5.15)
J1(2)Yo(z) — Jo(2)Y1(2) J1(2)Yo(z) — Jo(2)Y1(2)

We can confirm that the minimum uncertainty is a function of one continuous parameter in
the finite region.

6. Results and discussion

The behaviour of nonconservative systems can sometimes be modelled by means of a time-
dependent mass. The immediate manifestation of a variable mass occurs in the case of a
particle which is disintegrating and losing mass. In this paper, we have obtained quantum
mechanical quantities of the harmonic oscillator with an exponentially decaying mass by
using the invariant operator method. At this point, we should note that there may be many
different invariants with many different auxiliary equations for a given time-dependent
Hamiltonian system.

To solve the classical equation of motion for this system, we begin by changing the time
scale. Then the solutions can be explicitly represented in terms of the first- and second-kind
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Bessel functions. By using these solutions, the quadratic dynamical invariant quantity can
be evaluated. The orbit of the invariant quantity has a rosette-shaped form in phase space
and confirms that the harmonic oscillator with an exponentially decaying mass is a bound
system. The time-dependent angi&y), between thej-axis and major axis of the orbit is
illustrated in figure 1. The full and broken curves correspond to the cages 1.1 and

wo = 1.2, respectively, and vary with time from 0 ter /2.

By using the lowering and raising operater§) andaf(r), the invariant quantity has
been expressed in number states. Although there may be many different operators for a
given time-dependent Hamiltonian, we chose the one satisfying equation (2.26). From the
application of an invariant operator to the Safinger equation, we can readily show that
the wavefunctions differ from the eigenstates of invariant operator by a time-dependent
phase factor. In figures 2 and 3, we have illustrated the variations of the probability density
|Wo(q, 1)|? and|W1(q, t)|?, respectively. The propagator of the system has been calculated
by an expansion of the wavefunctions and by using the Mehler’s formula expressed in terms
of the nth order Hermite polynomialH, (X).

The uncertainty relations at various states are given in equation (5.4). In figures 4-6, the
guantum fluctuations and uncertainty relations at various states are illustrated.gées
to zero, these fluctuations and the functif(r) are reduced to ones of a simple harmonic
oscillator with a constant mass. Since the minimum value of the uncertainty for the states
(equation (3.7)) is larger thaly2, we have evaluated the minimum uncertainty states. To
obtain these states, we have carried out unitary transformations such as equations (5.6) and
(5.7). In general, new lowering and raising operatbfs andb'(r) of another invariant
operator!’(¢) for different Hamiltonian system can be defined by unitary transformation
of a(t) andaf(r). That is, operator$(r) and b’(¢) in equations (5.6) and (5.7) describe
different Hamiltonian system, st (¢) is different from1(¢). This new invariant operator,
I'(t), may be constituted b¥(z) andbf(z) in the form of I'(t) = RQ'[b(t)!b (1) + %]. In
a similar way as in section 3, we have evaluated the ground state anthtlescited state
of this invariant operator]’(r), by usingb(r) andbf(r). That is, equation (5.8) gives the
eigenstates of this invariant operatéf(s), which are the minimum uncertainty states with
the minimum uncertainty condition of equation (5.15). Under this condition, therefore, the
uncertainty relations for these statgs(q, ) have been obtained l\AgAp),, = h(n+ %).

In future work, we shall evaluate more directly the exact solutions (invariant quantity,
exact wavefunctions, propagator and minimum uncertainty states) for the harmonic oscillator
with a pulsating mass.
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